
Coefficient of vacation

$$
\left(R^{2}\right)
$$

-Sum of Squares
T3 Multiple regression \ddagger various
Sum of Squares

the regression hin is the
residual error (ε)
$\varepsilon=\sum\left(\hat{y_{i}}-y_{i}\right)^{2}$
prodicord a active l value
value of the of the the
it olsenation
obsenation
(based en the - Why do we
egestion) save the differ To make ap
Summing all our residuals is called sum of stapes errorphe

Sum of squares expla
\rightarrow Total amount of varia
explained by the independent

Sum of Squares T_{0}

When you have multiple ind. Variables, R^{2} is no longer valid.

Correlation is not sufficient for causation, but it is necessary.

Model		Sum of Squares	df	Mean Square	F	Sig.
1	Regression	1058.441	1	1058.441	26.099	$.000^{\mathrm{a}}$
	Residual	1946.664	48	40.556		
	Total	3005.105	49			

$$
\begin{aligned}
& \text { a. Predictors: (Constant), RTN } \\
& \text { b. Dependent Variable: PVT }
\end{aligned}
$$

Coefficients ${ }^{\text {a }}$

Model	Unstandardized Coefficients		Standardized Coefficients	t	Sig.
	B	Std. Error	Beta		
(Constant)	19.807	1.163		17.035	000

IBM SPSS Statistics Processor is ready

